If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-2t-7=0
a = 2; b = -2; c = -7;
Δ = b2-4ac
Δ = -22-4·2·(-7)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{15}}{2*2}=\frac{2-2\sqrt{15}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{15}}{2*2}=\frac{2+2\sqrt{15}}{4} $
| 2x+35=635 | | 2x^2=7x+120 | | 3/10x-7=7 | | 10x-7=15x-10 | | w*w*w=512 | | 33=9r*27-3r | | 2x+12=3x+14 | | -8+-1x+7x2=0 | | (4x+14))=180 | | 3-2/4=b | | -3x+7=-1x+5 | | (5x+4)=180 | | (x+8)^2-39=0 | | 5x-11+2x+7+3x-5=180 | | 1/4x+1/5=4 | | 3c-9=-9 | | 1/7v+5/v=1 | | 1u-10.32=1.68 | | x^2-x42=0 | | 1x+4=-1x+12 | | 1/4b+1/2=5/12b-1/4 | | 18u=-90 | | (4x+14)+(5x+4)=180 | | -114=6+10n | | −1/2y=−4 | | 4(1+.5m)=7 | | 5/6x-1=-3 | | (4x+14)+(5x+4)=28 | | (4.9x^2)+10x-3.5=0 | | 4(3m+2)=12(m-1)+19 | | 6-9x+4=6x+5 | | m+3.4=2.1m+3.4=2.1. |